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Abstract. The solution of the Subproblem of the Cutting Angle Method of Global Optimi-
zation for problems of minimizing increasing positively homogeneous of degree one functions
is proved to be NP-Complete. For the proof of this fact we formulate another problem which

we call ‘‘Dominating Subset with Minimal Weight’’. This problem is also NP-Complete. An
O(n2)-time algorithm is presented for approximate solution of Dominant Subset with Minimal
Weight Problem. This problem can be expressed as a kind of Assignment Problem in which it

is allowed to assign multiple tasks to a single processor. Experimental analysis of the algorithm
is performed using the program implemented in ANSI-C. The results of the analysis show the
efficiency of the proposed algorithm.
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1. Introduction

Cutting Angle Method described in papers [1, 2, 4–6, 10–12] was devel-
oped for solving a broad class of Global Optimization Problems. This
method is an iterative one requiring the solution of a subproblem (mini-
mizing functions fðxÞ, defined on the set S ¼ x :

Pn
i¼1 xi ¼ 1;xiP0;

�

i ¼ 1; . . . ; ng, where x ¼ ðx1; . . . ; xnÞ), which is, generally, a Global
Optimization Problem. Different algorithms based on discrete program-
ming, dynamic programming and nonsmooth analysis techniques were pro-
posed for the solution of this subproblem in papers [1, 4–6, 11, 12]. While
the size of the input increases, it takes a long time to obtain the solution
by those algorithms. In paper [3] two algorithms are given to solve the
subproblem. The first algorithm produces optimal solution for a special
case, and for all the other cases a heuristic way is pursued for the
solution.
In this paper we study some properties of the optimal solutions of the

subproblem and by means of these properties we prove that this problem
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is equivalent to a problem of Boolean programming, which we call ‘‘Domi-
nant Subset of Minimal Weight’’ (in the following DSMWP). The last
problem can be used in other situations as well. By transformation of this
problem to the Knapsack problem we prove that it is NP-Complete, there-
fore the subproblem considered above is also NP-Complete. Taking into
account that this problem is NP-Complete, a heuristic algorithm of com-
plexity of O(n2) is introduced.
This algorithm covers general cases while particular cases are considered

in [3].
In order to test the efficiency of the algorithm, computational

experiments have been carried. We generated randomly input matrices
ðujiÞ and ðlki Þ of different sizes which do not include easy solutions. In
experiments we study both subproblem and problem DSMWP for small
and large matrices. The experiments show the high efficiency of the algo-
rithm.
In this paper, first we formulate our Subproblem and then we give the

main facts and definitions to be used later. By transforming subproblem
into a Boolean variable problem, we show the equivalance of problem with
Dominating Subset of Minimal Weight Problem, which in turn can be for-
mulated as a Multiple-Choice Knapsack Problem. Therefore we conclude
that Subproblem (1) and (2) is NP-Complete.
In last section, we give Algorithm A to solve DSMW Problem and

results of computational experiments.

2. Formulation of the Problem

Let ðlki Þ be an ðm � nÞ matrix, mP n, with m rows lk, k ¼ 1; . . . ;m, and n
columns, i ¼ 1; . . . ; n. All elements lki are nonnegative. The first n rows of
ðlki Þ matrix form a diagonal matrix, i.e., lki > 0, only for k ¼ i; i ¼ 1; . . . ; n.
Introduce the function

hðxÞ ¼ max
k

min
i2IðlkÞ

lki xi; where IðlkÞ ¼ fi : lki > 0g:

The problem considered in this paper is formulated as follows:
Subproblem

Minimize hðxÞ ð1Þ
subject to

x 2 S ¼ x :
Xn

i¼1
xi ¼ 1;xiP0; i ¼ 1; . . . ; n

( )

: ð2Þ

354 URFAT G. NURIYEV



3. Some Results Concerning Optimal Solutions

The optimal solution for the case m ¼ n is as follows:

THEOREM 1 [3]. If m ¼ n, then Subproblem (1) and (2) has a unique solu-
tion

xi ¼ hðxÞ=lii; i ¼ 1; . . . ; n; where ð3Þ

hðxÞ ¼ min hðxÞ ¼ 1
Xn

i¼1

1

lii
:

,

ð4Þ

COROLLARY 1 [3]. min hðxÞ for m ¼ n is the lower bound of min hðxÞ for
any m > n. If m > n, then two cases are possible.

Case 1. For each k > n, there exists i such that lki Olii.

THEOREM 2 [3]. If for every k > n, there exists i, such that lki Olii, then
Subproblem possesses a unique solution, which coincides with the solution for
m ¼ n.

Case 2. 9K, such that lki > lii; 8i ¼ 1; . . . ; n, for 8k 2 K, i.e. the conditions of
Theorem 2 are not satisfied. We will use the following notation:

hkðxÞ ¼ min
i2IðlkÞ

lki xi; k ¼ 1; 2; . . . ;m; ð5Þ

hðxÞ ¼ max
k¼1;...;m

hkðxÞ; ð6Þ

h� ¼ min
x2S

hðxÞ: ð7Þ

Clearly, if x� is a solution of subproblem (1) and (2), then for each k
ðk ¼ 1; 2; . . . ;mÞ there exists ik such that hkðx�Þ ¼ lkikx

�
ik

and for kOn we
have ik ¼ k, i.e. hkðx�Þ ¼ lkkx

�
k. Let x 2 S and for each iði ¼ 1; 2; . . . ; nÞ

define

KiðxÞ ¼ fk 2 f1; . . . ;mg : hkðxÞ ¼ lkikxik ; ik ¼ ig
and

kiðxÞ ¼ arg max
k¼1;...;m

fhkðxÞ : k 2 KiðxÞg: ð8Þ

Obviously, if for the given i there is no k > n with hkðxÞ ¼ lki xi, then
kiðxÞ ¼ i, i.e.

hiðxÞ ¼ liixi: ð9Þ

REMARK 1. If for a given x, we call the smallest element of each row (i.e.
the element lki xi which equals to hkðxÞ) a chosen element, then for each col-
umn i the row number of the largest chosen element of this column will be
kiðxÞ.

CUTTING ANGLE METHOD OF GLOBAL OPTIMIZATION 355



EXAMPLE 1. Let matrix(lki ) ðk ¼ 1; 2; . . . ; 8; i ¼ 1; 2; . . . ; 4Þ be as follows:

Let us take x1 ¼ 5=9, x2 ¼ 5=18, x3 ¼ 1=9, x4 ¼ 1=18, then
P4

i¼1 xi ¼ 1.
Calculating lki xi ðk ¼ 1; 2; . . . ; 8; i=1, 2, 3, 4) and hkðxÞ ðk ¼ 1; 2; . . . ; 8Þ
by means of formula (5) we get the following matrix ðLk

i Þ

We call ‘‘a chosen element’’ the smallest element in each row (marked
element in Matrix(Lk

i )). If we take the greatest element of the chosen
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element in each column (dark element in Matrix(Lk
i )), the row number of

this element will be kiðxÞ i.e. kiðxÞ will be the row number of the greatest
chosen element in ith column.
For the matrix above the chosen element in first row will be L1

1, in sec-
ond row L2

2, in third row L3
3, in fourth row L4

4, in fifth row L5
4, in sixth

row L6
3, in seventh row L7

4 and in eighth row L8
4.

We have only one chosen element ðL1
1Þ in the first column, so k1ðxÞ ¼ 1;

there is only one chosen element ðL2
2Þ in the second column, therefore

k2ðxÞ ¼ 2. We have two chosen elements (L3
3 and L6

3) in third column, since
L6
3 > L3

3, k3ðxÞ ¼ 6. There are four chosen elements in fourth column: L4
4,

L5
4, L

7
4, L

8
4: The greatest of them is L7

4, therefore k4ðxÞ ¼ 7.
For k < n (in our example, k ¼ 1, 2, 3, 4) there is only one element in

each row, so these elements will be chosen ones. It means that there is at
least one chosen element in each column. If there are no chosen elements
for k > n (in our example, k ¼ 5, 6, 7, 8) we will have kiðxÞ ¼ i, i.e. the
formula (9) is true. In the example above this holds for first and second
columns, i.e. k1ðxÞ ¼ 1 and k2ðxÞ ¼ 2.
Let us define

liðxÞ ¼ l
kiðxÞ
i ; i ¼ 1; 2; . . . ; n: ð10Þ

THEOREM 3. If x� ¼ ðx�1; x�2; . . . ;x�nÞ is an optimal solution of the Subprob-
lem ð1Þ and ð2Þ, then

liðx�Þx�i ¼ h�; i ¼ 1; 2; . . . ; n: ð11Þ

Proof. Let I ¼ f1; 2; . . . ; ng. It is clear from (6), (8) and (10) that we have

liðx�Þx�i Oh�; i ¼ 1; 2; . . . ; n: ð12Þ
Now suppose that Theorem 3 is not true, i.e., there are i1; i2; . . . ; it 2 I such
that

likðx�Þx�ik < h�; k ¼ 1; 2; . . . ; t: ð13Þ
Let It ¼ fi1; i2; . . . ; itg and eIt ¼ I=It ¼ fitþ1; itþ2; . . . ; ing. Then we obtain
from (12) and (13)

liðx�Þx�i ¼ h�; i 2 eIt: ð14Þ
Let us consider new variables xi, i 2 I:

xi ¼ x�i þ ai; i 2 It ð15Þ
xi ¼ x�i � ai; i 2 eIt; ð16Þ

where ai > 0, i 2 I and the following conditions are satisfied:
X

i2I
xi ¼ 1; ð17Þ
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li1ðx�Þxi1 ¼ li2ðx�Þxi2 ¼ � � � ¼ litðx�Þxit ¼ litþ1ðx�Þxitþ1 ¼ � � � ¼ linðx�Þxin
ð18Þ

Substituting the values of the variables xi defined by (15) and (16) in (17)
and (18) we obtain:

X

i2It
ðx�i þ aiÞ þ

X

i2eIt

ðx�i � aiÞ ¼ 1;

X

i2I
x�i þ

X

i2It
ai �

X

i2eIt

ai ¼ 1:

Since x�i 2 S we have
P

i2I x
�
i ¼ 1 and we obtain:

X

i2It
ai ¼

X

i2eIt

ai: ð19Þ

The expression (18) leads to the following system of equations:

li1ðx�Þðx�i1 þ ai1Þ ¼ linðx�Þðx�in � ainÞ;

li2ðx�Þðx�i2 þ ai2Þ ¼ linðx�Þðx�in � ainÞ;
� � � � � � � � � � � � � � � � � � � � � :

litðx�Þðx�it þ aitÞ ¼ linðx�Þðx�in � ainÞ;

litþ1ðx�Þðx�itþ1 � aitþ1Þ ¼ linðx�Þðx�in � ainÞ;
� � � � � � � � � � � � � � � � � � � � �

lin�1ðx�Þðx�in�1 � ain�1Þ ¼ linðx�Þðx�in � ainÞ:

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

ð20Þ

If we add Equation (19) to this system (20) consisting of (n� 1) equations
we will have n equations for finding n undetermined ai > 0, i 2 I. Finding
ai’s from this system we can calculate new values of (xi; i 2 I) by formulas
(15) and (16).

Let It \ IðlkÞ ¼ ItðlkÞ and eIt \ IðlkÞ ¼ eItðlkÞ.
Consider hkð�xÞ, where �x ¼ ðx1;x2; . . . ; xnÞ.

hkð�xÞ ¼ min
i2IðlkÞ

lki xi ¼ minf min
i2ItðlkÞ

lki xi; min
i2eItðlkÞ

lki xig: ð21Þ

Assume that

hkðx�Þ ¼ lki�
k
x�i�

k
; k ¼ 1; 2; . . . ;m: ð22Þ

For each k we have two cases:
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Case 1. If i�k 2 eItðlkÞ then from (22), (10), (16) and (14) we obtain:

min
i2eItðlkÞ

lki xi O lki�
k
xi�

k
O li�

k
ðx�Þxi�

k
¼ li�

k
ðx�Þx�i�

k
� li�

k
ðx�Þai�

k
¼ h� � li�

k
ðx�Þai�

k
< h�

ð23Þ
Case 2. If i�k 2 ItðlkÞ then from (22), (10), (20), (16) and (14) we obtain:

min
i2ItðlkÞ

lki xiOlki�
k
xi�

k
Oli�

k
ðx�Þxi�

k
¼ linðx�Þxin ¼ linðx�Þx�in � linðx�Þain

¼ h� � linðx�Þain < h�
ð24Þ

Now from (21), (23) and (24) we have hkð�xÞ < h�, k ¼ 1; 2; . . . ;m. There-
fore it follows from (6) and (7) that hð�xÞ ¼ maxk hkð�xÞ < h� and �h < h�.
But this is a contradiction with optimality of the solution h� of problem
(1) and (2).
This completes the proof of Theorem 3. (

COROLLARY 2. The optimal solution of Subproblem ð1Þ and ð2Þ is given as

x�i ¼ h�=liðx�Þ; i ¼ 1; . . . ; n; where ð25Þ

h� ¼ 1
Xn

i¼1

1

liðx�Þ
:

,

ð26Þ

Substituting (10) in (25) and (26) we obtain:

x�i ¼ h�=l
kiðx�Þ
i ; i ¼ 1; . . . ; n; where ð27Þ

h� ¼ 1
Xn

i¼1

1

l
kiðx�Þ
i

,

ð28Þ

4. Transformation of the Subproblem to an Equivalent Problem

Formulas (27) and (28) are obtained from (3) and (4) by substituting l
kiðx�Þ
i

instead of lii. This means that if the condition of Theorem 2 is not satisfied,
the optimal solution will be obtained by substituting some of lii’s (those i’s for
which hiðx�Þ 6¼ liix

�
i , i.e. for which the condition (11) is not satisfied) by lkii .

Now let us see how the function h ¼ 1=
Pn

i¼1
1
li
i

changes in this substitu-

tion. Without loss of generality we can assume that h0 is obtained from h
by substituting only two elements (say l11 and l22) and remaining left
unchanged:

h ¼ 1

1
l1
1

þ 1
l2
2

� �
þ 1

l3
3

þ � � � þ 1
lnn

; h0 ¼ 1

1

l
k1
1

þ 1

l
k2
2

� �

þ 1
l3
3

þ � � � þ 1
lnn

:
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Since the condition of Theorem 2 is not satisfied then l k11 > l11 and l k22 > l22.

Denoting by L ¼ 1
l1
1

þ 1
l2
2

þ � � � þ 1
l nn
and 1

li
i

� 1

l
ki
i

¼ ukii , we will have h ¼ 1
L and

h0 ¼ 1

1

l
k1
1

� 1
l1
1

� �

þ 1

l
k2
2

� 1
l2
2

� �� �

þ 1
l1
1

þ 1
l2
2

� �
þ 1

l3
3

þ � � �þ 1
lnn

� �¼
1

�uk11 � uk22 þL
;

h0 � h ¼ 1

L� uk11 � uk22
� 1

L
¼ uk11 þ uk22

L L� uk11 þ uk22

� �� � ¼ uk11 þ uk22

L2 � L uk11 þ uk22

� � :

We see that if uk11 þ uk22 decreases then ðh0 � hÞ also decreases. Therefore to
obtain the optimal solution we must carry out changes lkii ! lii, such that
the sum above is minimal, i.e.X

i

ukii ! min : ð29Þ

We will use the following notation for simplicity:

p ¼ m� n; uji ¼
1

lii
� 1

ljþni

; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p:

Clearly uji is the increment of the denominator of the fraction that
expresses the function h in the substitution ljþni ! lii.
Let us define the following function:

SgðxÞ ¼ 1; if xP0;
0; if x < 0

�

and consider variables xji; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p:

xji ¼
1; if the substitution ljþni ! lji is accomplished
0; otherwise

�

So Subproblem (1) and (2) is transformed into the following Boolean (0–1)
programming problem:

Xn

i¼1

Xp

j¼1
ujix

j
i ! min

xj
i

ð30Þ

Xn

i¼1
xjiO1; j ¼ 1; 2; . . . ; p; ð31Þ

Xp

j¼1
xjiO1; i ¼ 1; 2; . . . ; n; ð32Þ

Xn

i¼1

Xp

j¼1
xjiP1; ð33Þ
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Xn

i¼1
yjiP1; j ¼ 1; 2; . . . ; p; ð34Þ

xji ¼ 0 _ 1; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p; ð35Þ

yji ¼ Sgð max
k¼1;...;p

fuki xki g � ujiÞ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p; ð36Þ

where condition (30) is obtained from condition (29), conditions (31) and
(32) from (5) and (33) from (6). Since the condition of Theorem 2 is not
satisfied so condition (9) will not for all i’s (i ¼ 1; 2; . . . ; n), i.e. at least one
substitution ljþni ! lii will be accomplished in the optimal solution and this
means condition (33). Condition (34) is obtained from (7), (8), (10) and the
definition of the variables yji (i.e. from (36)).
Thus we can obtain the optimal solution of Subproblem (1) and (2) by

the substitution lj
�

i� by lj
� þ n
i� in formulas (3) and (4) for all xj

�

i� ¼ 1 in the
optimal solution of the problem (30)–(36) and vice versa. In other words
the following theorem holds.

THEOREM 4. Subproblem (1) and (2) and Problem (30)–(36) are equivalent.

5. Dominating Subset of Minimal Weight Problem

Let us call the problem (30)–(36) ‘‘Dominating Subset with Minimal
Weight’’. We can interpret this problem as follows:
Let ðujiÞ be a ðp � nÞ matrix, with p rows, j ¼ 1; 2; . . . ; p and n columns,
i ¼ 1; 2; . . . ; n and nonnegative uji for all i; j.
The task is to choose some elements of the matrix such that:

� Each row contains a chosen element, or contains some element which
is less than some chosen element located in its column;
� The sum of the chosen elements is minimal.

We can give the following applied interpretation of this problem:

A task consisting of pðj ¼ 1; 2; . . . ; pÞ operations can be accomplished
by nði ¼ 1; 2; . . . ; nÞ processors. Suppose that the matrix (uji) gives the time
necessary for accomplishment of the task as follows: If

uj1i Ouj2i O � � �Ou
jp
i ð37Þ

for column i, then uj1i is the time (or cost) for accomplishment of operation

j1 by processor i; uj2i is the time for the accomplishment of operations j1 and
j2 by processor i, and so on. At last u

jp
i is the time for the accomplishment
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of all operations ðj1; j2; . . . ; jpÞ by processor i. The problem is to distribute
operations among the processors minimizing the total time (or the total
cost) required for the accomplishment of all tasks.

6. Complexity of the Subproblem

Now we transform problem (30)–(36) into an equivalent Multiple-Choice
Knapsack problem with p � n ¼ q binary variables and p constraints.
Coefficients of the objective function of this problem are defined as

c1 ¼ u11; c2 ¼ u21; . . . ; cp ¼ u
p
1; cpþ1 ¼ u12; cpþ2 ¼ u22; . . . ; c2p ¼ u

p
2;

c2pþ1 ¼ u13; . . . ; cq ¼ upn:

Consider 1OkOq. Suppose ck¼uj
i
for some i, j, i.e., ck equals to some ele-

ment in ith column and jth row of matrix ðujiÞ and for ith column of this
matrix the condition (37) above is satisfied. Assume that ck is in sth place
in row (37) i.e. ck ¼ ujsi Then aj1k ¼ aj2k ¼ � � � ¼ ajsk ¼ 1 and
ajsþ1k ¼ ajsþ2k ¼ � � � ¼ a

jp
k ¼ 0.

We obtain the following problem:
Xq

i¼1
cizi ! min ð38Þ

Xq

i¼1
ajiziP1; j ¼ 1; 2; . . . ; p ð39Þ

zi ¼ 0 _ 1; i ¼ 1; 2; . . . ; q: ð40Þ
To explain this transformation let us consider the following example:

EXAMPLE 2. Let matrix ðujiÞ be as follows:

ðujiÞ ¼
2 4 9
8 12 3
10 6 5

0

@

1

A:

Then c ¼ ð2; 8; 10; 4; 12; 6; 9; 3; 5Þ and matrix ðajiÞ is:

1 1 1 1 1 1 1 0 0
0 1 1 0 1 0 1 1 1
0 0 1 0 1 1 1 0 1

0

@

1

A

Problem (38)–(40) is a Multiple-Choice Knapsack problem and since it is
NP-Complete [7, 9] then problem (30)–(36) is also NP-Complete. So the
following Theorem and Corollary hold:
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THEOREM 5. The problem (30)–(36) is NP-Complete.

COROLLARY 3. Subproblem (1) and (2) is NP-Complete.

7. A Solution of the Dominating Subset of Minimal Weight Problem

Let uj be chosen as follows for each row j;

uj ¼ min
i¼1;...;n

fujig; j ¼ 1; 2; . . . ; p and ij as;

ij ¼ arg min
i¼1;...;n

fujig; j ¼ 1; 2; . . . ; p:

It is obvious that uj ¼ ujij . Let us call ujij the critical element for row j, and
determine �ui for column i;

�ui ¼
0; if no critical element exists in column i
maxj¼1;...;pfuji : u

j
i ¼ ujg; otherwise

�

Suppose that there is i such that �ui 6¼ 0.
Then �ui ¼ maxj¼1;...;pfuji : u

j
i ¼ ujg ¼ maxj¼1;...;pfujij : ij ¼ ig ¼ ujii , and

ji ¼ arg max
j¼1;...;p

fujij : ij ¼ ig :

We call ujii the dominant critical element of column i.
For any two elements uj1i1 and uj2i2 if element unm (unm ¼ uj1i2 or unm ¼ uj2i1 ) at

the crossing of the row of the first element and the column of the second
(or the row of the second and the column of the first) is greater than any
of them but not their sum, then unm is called the common dominant of uj1i1
and uj2i2 . If both elements uj1i2 and uj2i1 are common dominants then the smal-
ler one is called the smaller common dominant and the greater one is called
the greater common dominant.
If for the element uji, there exist the rows ji1; j

i
2; . . . ; jiti , such that ujiP

u
ji
1

i ; u
j
iPu

ji
2

i ; . . . ; ujiPu
jiti
i , then uji is called the dominant of elements

u
ji
1

i ; u
ji
2

i ; . . . ; u
jiti
i and row j is called the dominant of rows ji1; j

i
2; . . . ; jiti for col-

umn i.
For each critical element uji let us construct the structure as

uji; j; j
i
1; j

i
2; . . . ; jiti .

In this structure j indicates the row in which element uji is placed and
numbers ji1; j

i
2; . . . ; jiti indicate the rows on which the row j is dominant for

the column i.

7.1. A GENERAL SOLUTION ALGORITHM A FOR THE PROBLEM

Taking in account the properties of DSMW problem, we give the following
heuristic algorithm to solve it.
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ALGORITHM A:

A1. Find ui ¼ maxj¼1;...;pfujig and ji ¼ argmaxj¼1;...;pfujig; i ¼ 1; 2; . . . ; n.
It is clear that ui ¼ ujii .

A2. Find U� ¼ mini¼1;...;nfuig, iji ¼ argmini¼1;...nfuig. It is true that
U� ¼ ujiiji

.
Set the solution matrix X� such as each decision variable xji is 0 but
xjiiji

is 1.
A3. If U� ¼ mini¼1;...;nfujii g (that is, if U� is the minimal element of the

row where it is placed.), then the optimal solution is found, go to
A15.

A4. Determine critical elements for each row; uj ¼ ujij , j ¼ 1; 2; . . . ; p.
A5. Find the dominant critical elements for each column; �ui,

i ¼ 1; 2; . . . ; n. If no critical element exists in column i, then �ui is
assumed to be 0, and is not taken into account in further steps.

A6. Sort the critical elements in descending order provided that the dom-
inant ones are at the head.

�ui1P�ui2P � � � �uiqPuj1Puj2P � � �Pujp ð41Þ
In (41), leftmost q elements are dominant critical elements, qOn.

A7. Find a solution according to the current order using the following
Algorithm B. Set the initial values U ¼ 0, X ¼ 0 and
N ¼ f1; 2; . . . ; pg prior to the execution of Algorithm B.

A8. For the newly obtained solution, if the value of the objective func-
tion U < U� then set U� and X� according to the new solution.

A9. Perform the steps A10–A14 for i ¼ 2; 3; . . . ; n.
A10. Perform the steps A11–A14 for j ¼ 1; 2; . . . ; i� 1.
A11. If no dominant element exists for �ui and �uj then go to A10.
A12. Let uji be the dominant of �ui and �uj. Insert u

j
i after the dominant ele-

ments in (41).
A13. Set the initial values U ¼ uji; x

j
i ¼ 1 and N ¼ f1::pgnfj; ji1; ji2; . . . ; jitig,

apply Algorithm B.
A14. For the newly obtained solution, if the value of the objective function

U < U� then Set U� and X� according to the new solution.
A15. End the algorithm with an output of U�, X�.

The above Algorithm A is a heuristic algorithm which produces a feasi-
ble solution, satisfying all constraints. In this algorithm firstly the largest
element of each column is found and the smallest one is taken as a primary
solution (steps A1 and A2).
If this solution satisfies the optimization condition (Proposition 3

[3]) then algorithm ends and declares that the solution is found (step
A3).
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Then for each row the critical elements are found and for each column
the dominant critical element is determined, and they are taken in a nonin-
creasing (decreasing) sequence (41) (step A4–A6).
To find a feasible solution in each iteration of algorithm A, greedy algo-

rithm B, which takes in an account the sequence (41), is used. At the
beginning of iteration a solution corresponding to the sequence (41) is
found (step A7) and then the ordered critical elements are compared pair-
wise trying to find a dominant element for them (steps A9–A14). These ele-
ments are located in the sequence (41) after the elements for which they
are dominants (step A12). Those elements are assumed as to be chosen in
the input of algorithm B (step A13). Each solution found in this way is
compared with the best solution found earlier and the best solution among
them is chosen (step A8).
Note that the number of steps of the algorithm A is bounded by the

number of columns ðnÞ of the matrix ðujiÞ.

7.2. PARTICULAR SOLUTION ALGORITHM B

The algorithm B is greedy and uses the sequence (41). In each iteration of
this algorithm a next element from the sequence (41) is chosen and if this
element is removed in the set N, it is added to the set U and all row num-
bers for which this element is dominant. Here U is the set of row numbers
of chosen elements and N is the set of row numbers of removed elements.
The number of steps of this algorithm is bounded by the number n of
the matrix ðujiÞ.

ALGORITHM B:

Initial values of U, N, and X are set in the caller step in Algorithm A prior
to execution of Algorithm B.
B1. k 1
B2. If jik j2N then go to B7
B3. U Uþ �uik
B4. xj

ik

ik
 1

B5. N Nn jik ; jik1 ; j
ik
2 ; . . . ; jiktk

� �

B6. If N ¼ [ then go to B9
B7. k kþ 1
B8. If kOn then go to B2.
B9. End the algorithm with an output of U, X.

7.3. COMPUTATIONAL EXPERIMENTS

In order to test its efficiency, the algorithm is applied to a number of
inputs.
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The codes have been written in ANSI-C. Numerical experiments have
been carried out on an IBM Pentium-S CPU 166MHz.
To provide the average case, randomly generated input matrices of dif-

ferent sizes are used. For the purpose of imitating inputs of general nature,
the matrices are generated under the conditions stated below:

(a) 0O uji O 100 and the uji elements are not integers;
(b) None of the rows majors any other row, i.e., there are no rows j1, j1

that for every i; lj1i P lj2i .
(c) For any value of n, 10 input matrices are generated.

The tests are done in two stages. In the first stage, small values are cho-
sen for n, and the solutions are found by both the described algorithm and
Branch & Bound algorithm [8] in order to consider how close is the solu-
tion found by the algorithm to the optimum solution. Relative errors are
estimated by ratio a ¼ U�U�

U� . In this stage values are chosen as n ¼ 5, 6, 8,
10 and p ¼ 10, 12, 16, 15, respectively.
In the second stage, the purpose is to evaluate the time required by the

algorithm for solution of problems with larger scale input matrices. So the
values are chosen as p ¼ 1000 and n ¼ 5; 10; 15; . . . ; 50. The results are
presented in the following tables.
As it is seen from Table 1, the presented Algorithm A gives the optimal

solutions for most of the inputs and very close results for the rest. In Table
2, the time required for solution of large scale inputs are given showing
that the algorithm is fast even for large scale input matrices.
The computational experiment above was carried out for Subproblems

(1) and (2) as well (i.e. the matrix (lki ) was taken as input data, a matrix
(uji) was obtained and the problem was solved). It is interesting that in all
these experiments we have obtained optimal solutions (we have taken
n ¼ 5, 10 and m ¼ 2n; 3n; 4n).
The experiments with large scale matrices for Subproblems (1) and (2)

were carried out. In this experiment, the elements of matrix of problem are
randomly produced according (a)–(c) conditions above. We have consid-
ered values m ¼ 100; 200; . . . ; 1000 and n ¼ 20, 30, 40, 50, 100. Solution
for each of m and n is given in Table 3.

7.4. ON THE COMPLEXITY OF THE ALGORITHM

The algorithm costs most at steps A9–A14 which are of O nðnþ1Þ
2

� �
¼ Oðn2Þ

in total, hence the time complexity of the algorithm is Oðn2Þ. Adding the
dominant elements obtained in step A11 to the sequence (9) increases the
time elapsed, and it is not necessary always to pursue this task, because it
has been revealed during the tests that the solution produced by the algo-
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rithm is one of the solutions obtained in the early iterations of the algo-
rithm. So, in these tests the limit for the number of iterations is chosen as
n2, but it will make sense if for extremely large inputs the limit for the
number of iterations is chosen smaller to decrease the total time elapsed.

REMARK 2. In the algorithm given in paper [3], the number of iterations
will decrease at a rate of nðn� 1Þ provided that the changes below are
done in the algorithm:

Step 2. j ¼ argmini 1
lii
� 1

l
qðiÞ
i

� �

Step 3. If 1
ljj
� 1

l
qðjÞ
j

� �

¼ mini
1
li
i

� 1

l
qðjÞ
i

� �

then let ljj ¼ l
qðjÞ
j and

8. Conclusion

In this paper a new heuristic algorithm for solving auxiliary problem in the
Cutting Angle Method (CAM) of global optimization has been proposed
and studied. The auxiliary problem is solved at each iteration of CAM and

Table 2. Results for large scale input matrices

No n p Time (s)

1 5 1000 0.05

2 10 1000 0.05

3 15 1000 0.16

4 20 1000 0.16

5 25 1000 0.16

6 30 1000 0.22

7 35 1000 0.22

8 40 1000 0.27

9 45 1000 0.27

10 50 1000 0.27

Table 3. Results for large scale input matrices for subproblem

No m\n 20 30 40 50 100

1 100 0.00 0.00 0.00 0.05 -

2 200 0.00 0.05 0.05 0.05 0.05

3 300 0.05 0.05 0.05 0.05 0.16

4 400 0.05 0.05 0.05 0.05 0.27

5 500 0.05 0.05 0.11 0.11 0.33

6 600 0.11 0.11 0.11 0.11 0.38

7 700 0.11 0.11 0.11 0.16 0.44

8 800 0.16 0.11 0.16 0.22 0.44

9 900 0.16 0.22 0.16 0.22 0.55

10 1000 0.16 0.22 0.27 0.33 0.66
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the efficiency of CAM strongly depends on an algorithm for solving auxil-
iary problem. It is known that the latter problem is NP-hard.
The time complexity of the proposed algorithm is O(n2). If the condi-

tions in Algorithm 1 from [3] (Proposition 3) are satisfied then this algo-
rithm will be finished at the global solution. The new algorithm can be
applied to more general situations than Algorithms 1 and 2 proposed and
studied in [3]. The algorithm proposed in this paper can be considered as a
generalization of Algorithms 1 and 2 from [3]. It should be noted that this
algorithm requires more memory than Algorithms 1 and 2. A number of
numerical experiments have been carried out using the proposed algorithm.
The results of these experiments show its effectiveness. In numerical experi-
ments, the CPU time was less than 0.01 s, when the conditions of [3]
(Proposition 3) are satisfied, regardless dimensions of the matrix under
consideration.
The study of new versions of CAM using the proposed algorithm for

solving auxiliary problem is the subject of our future investigations.
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