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Abstract. The solution of the Subproblem of the Cutting Angle Method of Global Optimi-
zation for problems of minimizing increasing positively homogeneous of degree one functions
is proved to be NP-Complete. For the proof of this fact we formulate another problem which
we call “Dominating Subset with Minimal Weight”. This problem is also NP-Complete. An
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is performed using the program implemented in ANSI-C. The results of the analysis show the
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1. Introduction

Cutting Angle Method described in papers [1, 2, 4-6, 10-12] was devel-
oped for solving a broad class of Global Optimization Problems. This
method is an iterative one requiring the solution of a subproblem (mini-
mizing functions f(x), defined on the set S={x:>7 x=1x2>0,
i=1,...,n}, where x=(x,...,x,)), which is, generally, a Global
Optimization Problem. Different algorithms based on discrete program-
ming, dynamic programming and nonsmooth analysis techniques were pro-
posed for the solution of this subproblem in papers [1, 4-6, 11, 12]. While
the size of the input increases, it takes a long time to obtain the solution
by those algorithms. In paper [3] two algorithms are given to solve the
subproblem. The first algorithm produces optimal solution for a special
case, and for all the other cases a heuristic way is pursued for the
solution.

In this paper we study some properties of the optimal solutions of the
subproblem and by means of these properties we prove that this problem
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is equivalent to a problem of Boolean programming, which we call ““Domi-
nant Subset of Minimal Weight” (in the following DSMWP). The last
problem can be used in other situations as well. By transformation of this
problem to the Knapsack problem we prove that it is NP-Complete, there-
fore the subproblem considered above is also NP-Complete. Taking into
account that this problem is NP-Complete, a heuristic algorithm of com-
plexity of O(n?) is introduced.

This algorithm covers general cases while particular cases are considered
in [3].

In order to test the efficiency of the algorithm, computational
experiments have been carried. We generated randomly input matrices
(/) and (/) of different sizes which do not include easy solutions. In
experiments we study both subproblem and problem DSMWP for small
and large matrices. The experiments show the high efficiency of the algo-
rithm.

In this paper, first we formulate our Subproblem and then we give the
main facts and definitions to be used later. By transforming subproblem
into a Boolean variable problem, we show the equivalance of problem with
Dominating Subset of Minimal Weight Problem, which in turn can be for-
mulated as a Multiple-Choice Knapsack Problem. Therefore we conclude
that Subproblem (1) and (2) is NP-Complete.

In last section, we give Algorithm A to solve DSMW Problem and
results of computational experiments.

2. Formulation of the Problem

Let () be an (m * n) matrix, m > n, with m rows I, k=1, ... ,m, and n
columns, i =1, ... ,n. All elements lf.‘ are nonnegative. The first #n rows of
(%) matrix form a diagonal matrix, i.e., X > 0, only for k =i,i=1, ... ,n.

Introduce the function

h(x) = max min /x;, where I(*) = {i: I} > 0}.
kiel(F)

The problem considered in this paper is formulated as follows:
Subproblem

Minimize A(x) (1)
subject to

xES:{X:Zx[:l,X,'ZO,l':L...,Vl}. (2)
i=1
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3. Some Results Concerning Optimal Solutions

The optimal solution for the case m = n is as follows:

THEOREM 1 [3]. If m = n, then Subproblem (1) and (2) has a unique solu-
tion

xi=h(x)/l,i=1, ... ,n, where (3)
h(x) = min h(x _1/211. (4)

COROLLARY 1 [3]. mink(x) for m =n is the lower bound of minh(x) for
any m > n. If m > n, then two cases are possible.

Case 1. For each k > n, there exists i such that /X </i.

THEOREM 2 [3]. If for every k > n, there exists i, such that I'<[, then
Subproblem possesses a unique solution, which coincides with the solution for
m=n.

Case 2. 3K, such that lﬁ-‘ > [LVi=1,...,n, for Vk € K, i.e. the conditions of
Theorem 2 are not satisfied. We will use the following notation:

hi(x )—mlnl)c,,k:1,2,...7m7 (5)
iel(lF)

h(x) = max hie(x), (6)

h* = r{lelglh(x) (7)
Clearly, if x* is a solution of subproblem (1) and (2), then for each k
(k=1,2,...,m) there exists i such that /i (x*) = lﬁx;‘, and for k<n we
have i =k, ie. h(x*) =Fx;. Let x € S and for each i(i=1,2,...,n)
define

Ki(x)={ke{l,....m}: h(x) = lﬁxik,ik =i}
and

ki(x) = arg nllax {h(x) : k € Ki(x)}. (8)

Obviously, if for the given i there is no k> n with /(x) :Iﬁ.‘x[, then
k,‘(X) = i, 1.e. ‘
h,‘(X) = I;Xf. (9)

REMARK 1. If for a given x, we call the smallest element of each row (i.e.
the element lf.‘xf which equals to /i (x)) a chosen element, then for each col-
umn i the row number of the largest chosen element of this column will be

ki(X).
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EXAMPLE 1. Let matrix(/%) (k= 1,2, ... ,8;i=1,2,...,4) be as follows:

Matrix (1) .

kKNi] 1 [ 2] 3] 4

1] 1

2 2

3 4

4 5

513568

6 | 23512

7154|8110

8| 4l6] 9] 7

Let us take x; = 5/9, xy = 5/18, x3 = 1/9, x4 = 1/18, then 37 | x; = 1.
Calculating Fx; (k=1,2,...,8; i=1, 2, 3, 4) and I(x) (k=1,2,...,8)
by means of formula (5) we get the following matrix (L¥)

Matrix ( L}).

We call “a chosen element” the smallest element in each row (marked
element in Matrix(L¥)). If we take the greatest element of the chosen
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element in each column (dark element in Matrix(Lf)), the row number of
this element will be k;(x) i.e. k;(x) will be the row number of the greatest
chosen element in ith column.

For the matrix above the chosen element in first row will be L}, in sec-
ond row L%, in third row L%, in fourth row Li, in fifth row Li, in sixth
row L§, in seventh row L] and in eighth row L§.

We have only one chosen element (L}) in the first column, so k;(x) = 1;
there is only one chosen element (L3) in the second column, therefore
ka(x) = 2. We have two chosen elements (L3 and L$) in third column, since
L§ > L3, k3(x) = 6. There are four chosen elements in fourth column: L,
L3, L], L}: The greatest of them is L], therefore k4(x) = 7.

For k < n (in our example, k = 1, 2, 3, 4) there is only one element in
each row, so these elements will be chosen ones. It means that there 1s at
least one chosen element in each column. If there are no chosen elements
for k > n (in our example, k =5, 6, 7, 8) we will have k;(x) = i, i.e. the
formula (9) is true. In the example above this holds for first and second
columns, i.e. k;(x) =1 and ky(x) = 2.

Let us define

L) =1 i=1,2.. n (10)

THEOREM 3. If x* = (x],x},...,X}) is an optimal solution of the Subprob-
lem (1) and (2), then

Li(x*)x; =h", i=12...,n (11)

Proof. Let 7= {1,2,...,n}. It is clear from (6), (8) and (10) that we have

Li(x*)x;<h*, i=1,2,...,n. (12)
Now suppose that Theorem 3 is not true, i.e., there are iy,,...,I; € I such
that

L(x)x;, <k, k=1,2,... 1 (13)
Let I, = {i1,i2, ... ,i;} and I, = I/1, = {irt1,i42, ... ,in}. Then we obtain
from (12) and (13)

L(x)xt=h*, iel,. (14)
Let us consider new variables X;, i € I

Xi=x{+to, i€l (15)

Y=x—oiel, (16)

where o; > 0, i € I and the following conditions are satisfied:

d x=1, (17)

icl
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by (x*)xi, = Ly (X*)X5, = -+ = 1, (X)) %5, = L ()X 0 = - = 1, (x)X;,

Substituting the values of the variables X; defined by (15) and (16) in (17)
and (18) we obtain:

D) + > =) = 1.

il icl
t
g x}k+g oci—g o = 1.
icl icl, i
t

Since x; € S we have ) .., x7 = 1 and we obtain:

ZOC,':ZOC,'. (19)

i€l .
1€k icl,

The expression (18) leads to the following system of equations:

)

=~
=~

liz (X*)(x;; + aiz) = ll'n (X*)(x;; - ‘xin)a

L (x)(x] + o) = L, (x*) (x] — a3,), (20)

If we add Equation (19) to this system (20) consisting of (n — 1) equations
we will have n equations for finding » undetermined «; > 0, i € I. Finding
o;’s from this system we can calculate new values of (xX;,i € I) by formulas
(15) and (16). B B

Let I, N I(I) = I,(I¥) and I, N I(IF) = I,(I¥).

Consider /i (X), where X = (¥7,X2,...,X,).
=\ _ . k_ _ . . k_ . k_
hie(X) = ilg[l(l[lkl) Iix; = mln{ié’lgl(ll%) Iix;, 131(1;) I} (21)

Assume that
hk(x*)zzgxg, k=1,2,...,m (22)

For each k we have two cases:
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Case 1. If i € I,(IF) then from (22), (10), (16) and (14) we obtain:

min % < 5% < G ()X = G (0)xg — I (Y)a = b= L (3 < B
iel, ( K ) Kk k k k k k k k
(23)
Case 2. 1f i; € I,(I) then from (22), (10), (20), (16) and (14) we obtain:

min lxl<l X <l (x9)X = 4, (x9)X5, = 6, (x*)x; — 1, (x*) o,
i€l (1) ' (24)
=" =1 (x)o, < h*
Now from (21), (23) and (24) we have /i (x) < h*, k=1,2, ... ,m. There-
fore it follows from (6) and (7) that h(X) = maxy hk(X) < h* and h < h*.
But this is a contradiction with optimality of the solution A4* of problem
(1) and (2).
This completes the proof of Theorem 3. O

COROLLARY 2. The optimal solution of Subproblem (1) and (2) is given as

X; = h*/l ...,n, where (25)

(26)

Substituting (10) in (25) and (26) we obtain:
X; = h*/lk"('x*), i=1,...,n, where (27)

/ Z [k, (X (28)

4. Transformation of the Subproblem to an Equivalent Problem

Formulas (27) and (28) are obtained from (3) and (4) by substituting lik"(x*)
instead of /i. This means that if the condition of Theorem 2 is not satisfied,
the opt1ma1 solution will be obtained by substituting some of /’s (those i’s for
which A;(x*) # [x}, i.e. for which the condition (1 1) is not satlsﬁed) by lk
Now let us see how the function A =1/, 4 changes in this substitu-

tion. Without loss of generality we can assume that /' is obtained from 4
by substituting only two elements (say /| and 5) and remaining left
unchanged: . |

h= 11 1 = '
<E+E)+E+ o (,%M)szﬁ o
1
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Since the condition of Theorem 2 is not satisfied then /" > /! and 44* > .

DenotingbyL:}l—i—%+~-~+1n and1 /——uk we will have # =1 and
1 2
h/: 1 _ 1
- L
(R R T
A 1 2 2 1 b 3 n
W h— 1 1 ulfl +u§2 B ulfl +u§2

L—”T—M?_Z_J(L—(k%+ﬁﬁ)_l?—L@T+u§)
We see that if u/f' + 5> decreases then (K — h) also decreases Therefore to

obtain the optimal solution we must carry out changes I " — [\, such that
the sum above is minimal, i.e.

Z uf" — min. (29)
We will use the following notation for simplicity:
|
p=m—n, uézi—ﬁ, i=1,2,...,n j=12,...,p.

Clearly u] is the increment of the denominator of the fraction that
expresses the function / in the substitution /™ — [,
Let us define the following function:
_ ) Lif x>0,
Se(x) = {o, if x <0
and consider variables x’ i=1,2,....nj=12...p:
/ _ J 1, if the substitution l’+” — ['is accomplished
! 0, otherwise
So Subproblem (1) and (2) is transformed into the following Boolean (0-1)
programming problem:

ZZufxi — min (30)
=1 j—=1 x;

E:%SL j=12....p, (31)
i=1

P

dox<l, i=1,2,...,n, (32)

L] (33)
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STzl =12, (34)

i=1

)Ci:()\/l7 l:1,2,,n,]:17277p7 (35)

yi:: Sg(kn%ax {uf‘xic} _1’4>7 i=12...mj=12...,p, (36)
=1,..,p

where condition (30) is obtained from condition (29), conditions (31) and
(32) from (5) and (33) from (6). Since the condition of Theorem 2 is not
satisfied so condition (9) will not for all ’s (i =1,2,...,n), i.e. at least one
substitution /" — [ will be accomplished in the optimal solution and this
means condition (33). Condition (34) is obtained from (7), (8), (10) and the
definition of the variables )’ (i.e. from (36)).

Thus we can obtain the optimal solution of Subproblem (1) and (2) by
the substitution 7. by Z ™" in formulas (3) and (4) for all x, =1 in the
optimal solution of the problem (30)—(36) and vice versa. In other words
the following theorem holds.

THEOREM 4. Subproblem (1) and (2) and Problem (30)—(36) are equivalent.

5. Dominating Subset of Minimal Weight Problem

Let us call the problem (30)-(36) “Dominating Subset with Minimal
Weight”. We can interpret this problem as follows:
Let (1) be a (p+n) matrix, with p rows, j=1,2,...,p and n columns,
i=1,2,...,n and nonnegative . for all 7,;.

The task is to choose some elements of the matrix such that:

e Each row contains a chosen element, or contains some element which
is less than some chosen element located in its column;
e The sum of the chosen elements is minimal.

We can give the following applied interpretation of this problem:

A task consisting of p(j=1,2,...,p) operations can be accomplished
by n(i=1,2, ... ,n) processors. Suppose that the matrix (u}) gives the time
necessary for accomplishment of the task as follows: If

W <uP <<l (37)
for column i, then ué‘ is the time (or cost) for accomplishment of operation

J1 by processor i; uﬁz is the time for the accomplishment of operations j; and
Jj2 by processor i, and so on. At last #” is the time for the accomplishment
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of all operations (ji,/2,...,j,) by processor i. The problem is to distribute
operations among the processors minimizing the total time (or the total
cost) required for the accomplishment of all tasks.

6. Complexity of the Subproblem

Now we transform problem (30)—(36) into an equivalent Multiple-Choice
Knapsack problem with p * n = ¢ binary variables and p constraints.
Coefficients of the objective function of this problem are defined as
cr=ul, =1, =1, Cpil = U, Cpia =15, .., o =1,

Coptl :ué,..., cqg = ul.
Consider 1<k<gq. Suppose ¢,_ Y for some i, j, i.e., ¢t equals to some ele-
ment in ith column and jth row of matrix (uﬁ) and for ith column of this
matrix the condition (37) above is satisfied. Assume that ¢, is in sth place

in ' (37) ie. ¢ =u Then d& =dl=---=d;=1 and
a;{ﬁ—l :ak+2:"':C[Z):0'
We obtain the following problem:
Z ¢iz; — min (38)
Y dz=1, j=12,...p (39)
i=1
zz=0Vv1, i=12,...,q. (40)

To explain this transformation let us consider the following example:

EXAMPLE 2. Let matrix (i) be as follows:

. 2 4 9
Wy=1[8 12 3
10 6 5

Then ¢ = (2,8,10,4,12,6,9,3,5) and matrix (d)) is:

1 1 I 1 1 0 0
0 1 0 1 0 I 1
00 0 I 1 0 1

Problem (38)—(40) is a Multiple-Choice Knapsack problem and since it is
NP-Complete [7, 9] then problem (30)—(36) is also NP-Complete. So the
following Theorem and Corollary hold:
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THEOREM 5. The problem (30)—(36) is NP-Complete.

COROLLARY 3. Subproblem (1) and (2) is NP-Complete.

7. A Solution of the Dominating Subset of Minimal Weight Problem

Let «/ be chosen as follows for each row j;
u’— mm {u’}] 1,2,...,p and ij as;

l,—arg mm {u’}] 1,2,...,p.

It is obvious that W = u . Let us call u the critical element for row j, and
determine u; for column z

_ 0, if no critical element exists in column i
i = P : .
! max;_; _,{u; : v = '}, otherwise

Suppose that there is i such that ; # 0. ‘
Then i; = max;_;, p{u’ w, =1/} = max;_; p{u’ i =i} =u, and

Ji= arg_max {u’ =i}
We call u” the domznanl critical elemenz of column i. '
For any two elements /' and u if element u, (u, = 1] or u’, = u?) at
the crossing of the row of the first element and the column of the second
(or the row of the second and the column of the first) is greater than any
of them but not their sum, then u, is called the common dominant of u“
and u; If both elements u’; and u’“ are common dominants then the smal-
ler one is called the smaller common dominant and the greater one is called
the greater common dominant.

If for the element u), there exist the rows ji,j, .../, such that u/>

u] : ul>u]2 7 >u then 1 is called the dominant of elements
uj‘ u’2 e u] and row j is called the dominant of rows ji,j, ... ,jii for col-
umn i. '

‘For each critical element u, let us construct the structure as
u§-7j7j[]’jl?7 AR ’jlfl-' . . . . .

In this structure j indicates the row in which element «; is placed and
numbers ji, /3, ..., Jj; indicate the rows on which the row j is dominant for

the column .

7.1. A GENERAL SOLUTION ALGORITHM A FOR THE PROBLEM

Taking in account the properties of DSMW problem, we give the following
heuristic algorithm to solve it.
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ALGORITHM A.
Ay i=1,2,...,n.

Al. Find u; = maX/:L...,p{?‘{} and j; = argmax;_;
It is clear that u; = o/

A2. Find U* = minj—y__,{u;}, ij, = argmin;—; _,{u;}. It is true that
U* — u/i

i .
Set the solution matrix X* such as each decision variable X is 0 but

¥ s 1.
Ji

A3. If U" = min,—; n{uﬁ} (that is, if U* is the minimal element of the

row where it is placed.), then the optimal solution is found, go to

AlS.

A4. Determine critical elements for each row; 1/ = ui./_,j =1,2,...,p.

AS. Find the dominant critical elements for each column; ;,
i=1,2,...,n If no critical element exists in column i, then u; is

assumed to be 0, and is not taken into account in further steps.
A6. Sort the critical elements in descending order provided that the dom-
inant ones are at the head.
Uy 2=,z U > b (41)
In (41), leftmost g elements are dominant critical elements, g <n.
A7. Find a solution according to the current order using the following
Algorithm B. Set the initial values U =0, X =0 and
N = {1,2, ... ,p} prior to the execution of Algorithm B.
A8. For the newly obtained solution, if the value of the objective func-
tion U < U* then set U* and X* according to the new solution.
A9. Perform the steps A10-Al4 fori=2,3,... ,n.
A10. Perform the steps A11-Al14 for j=1,2, ... i—1.
All. If no dominant element exists for #; and i; then go to Al0.
Al12. Let uf be the dominant of #; and #;. Insert uﬁ after the dominant ele-
ments in (41). o
A13. Set the initial values U =u,xj=1 and N = {L.p\{j, /1,5 ./},
apply Algorithm B.
Al4. For the newly obtained solution, if the value of the objective function
U < U* then Set U* and X* according to the new solution.
Al5. End the algorithm with an output of U*, X*.

The above Algorithm A is a heuristic algorithm which produces a feasi-
ble solution, satisfying all constraints. In this algorithm firstly the largest
element of each column is found and the smallest one is taken as a primary
solution (steps Al and A2).

If this solution satisfies the optimization condition (Proposition 3
[3]) then algorithm ends and declares that the solution is found (step
A3).
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Then for each row the critical elements are found and for each column
the dominant critical element is determined, and they are taken in a nonin-
creasing (decreasing) sequence (41) (step A4-A0).

To find a feasible solution in each iteration of algorithm A, greedy algo-
rithm B, which takes in an account the sequence (41), is used. At the
beginning of iteration a solution corresponding to the sequence (41) is
found (step A7) and then the ordered critical elements are compared pair-
wise trying to find a dominant element for them (steps A9-A14). These ele-
ments are located in the sequence (41) after the elements for which they
are dominants (step A12). Those elements are assumed as to be chosen in
the input of algorithm B (step A13). Each solution found in this way is
compared with the best solution found earlier and the best solution among
them is chosen (step AS).

Note that the number of steps of the algorithm A is bounded by the
number of columns () of the matrix (u}).

7.2. PARTICULAR SOLUTION ALGORITHM B

The algorithm B is greedy and uses the sequence (41). In each iteration of
this algorithm a next element from the sequence (41) is chosen and if this
element 1s removed in the set N, it is added to the set U and all row num-
bers for which this element is dominant. Here U is the set of row numbers
of chosen elements and N is the set of row numbers of removed elements.
The number of steps of this algorithm is bounded by the number n of
the matrix (u?).

ALGORITHM B.

Initial values of U, N, and X are set in the caller step in Algorithm A prior
to execution of Algorithm B.

Bl. k— 1

B2. If j*¢ N then go to B7

B3. U — U+,

B o1

BS. N — N\{j*,j{J5, - Ji}

B6. If N = then go to B9

B7. k—k+1

BS8. If £ <n then go to B2.

B9. End the algorithm with an output of U, X.

7.3. COMPUTATIONAL EXPERIMENTS

In order to test its efficiency, the algorithm is applied to a number of
inputs.
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The codes have been written in ANSI-C. Numerical experiments have
been carried out on an IBM Pentium-S CPU 166 MHz.

To provide the average case, randomly generated input matrices of dif-
ferent sizes are used. For the purpose of imitating inputs of general nature,
the matrices are generated under the conditions stated below:

(a) 0 < uﬁ < 100 and the uﬁ elements are not integers;

(b) None of the rows majors any other row, i.e., there are no rows ji, ji
that for every i, ' > I

(c) For any value of n, 10 input matrices are generated.

The tests are done in two stages. In the first stage, small values are cho-
sen for n, and the solutions are found by both the described algorithm and
Branch & Bound algorithm [8] in order to consider how close is the solu-
tion found by the algorithm to the optimum solution. Relative errors are
estimated by ratio o = % In this stage values are chosen as n =35, 6, 8,
10 and p = 10, 12, 16, 15, respectively.

In the second stage, the purpose is to evaluate the time required by the
algorithm for solution of problems with larger scale input matrices. So the
values are chosen as p = 1000 and n = 5,10,15, ... ,50. The results are
presented in the following tables.

As it is seen from Table 1, the presented Algorithm A gives the optimal
solutions for most of the inputs and very close results for the rest. In Table
2, the time required for solution of large scale inputs are given showing
that the algorithm is fast even for large scale input matrices.

The computational experiment above was carried out for Subproblems
(1) and (2) as well (i.e. the matrix (lf.‘) was taken as input data, a matrix
(1)) was obtained and the problem was solved). It is interesting that in all
these experiments we have obtained optimal solutions (we have taken
n =75, 10 and m = 2n, 3n, 4n).

The experiments with large scale matrices for Subproblems (1) and (2)
were carried out. In this experiment, the elements of matrix of problem are
randomly produced according (a)-(c) conditions above. We have consid-
ered values m = 100,200, ... ,1000 and n = 20, 30, 40, 50, 100. Solution
for each of m and n is given in Table 3.

7.4. ON THE COMPLEXITY OF THE ALGORITHM

The algorithm costs most at steps A9—A14 which are of O(@) = 0(n?)

in total, hence the time complexity of the algorithm is O(n?). Adding the
dominant elements obtained in step All to the sequence (9) increases the
time elapsed, and it is not necessary always to pursue this task, because it
has been revealed during the tests that the solution produced by the algo-
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Table 2. Results for large scale input matrices

No n P Time (s)
1 5 1000 0.05
2 10 1000 0.05
3 15 1000 0.16
4 20 1000 0.16
5 25 1000 0.16
6 30 1000 0.22
7 35 1000 0.22
8 40 1000 0.27
9 45 1000 0.27

10 50 1000 0.27

Table 3. Results for large scale input matrices for subproblem

No m\n 20 30 40 50 100
1 100 0.00 0.00 0.00 0.05 -

2 200 0.00 0.05 0.05 0.05 0.05
3 300 0.05 0.05 0.05 0.05 0.16
4 400 0.05 0.05 0.05 0.05 0.27
5 500 0.05 0.05 0.11 0.11 0.33
6 600 0.11 0.11 0.11 0.11 0.38
7 700 0.11 0.11 0.11 0.16 0.44
8 800 0.16 0.11 0.16 0.22 0.44
9 900 0.16 0.22 0.16 0.22 0.55
10 1000 0.16 0.22 0.27 0.33 0.66

rithm is one of the solutions obtained in the early iterations of the algo-
rithm. So, in these tests the limit for the number of iterations is chosen as
n*, but it will make sense if for extremely large inputs the limit for the
number of iterations is chosen smaller to decrease the total time elapsed.

REMARK 2. In the algorithm given in paper [3], the number of iterations
will decrease at a rate of n(n— 1) provided that the changes below are
done in the algorithm:

Step 2. j = arg min, (,l - %)

i

| T | 1 i ()
:—W> = mm,-(l—;—m) then let /, =[]/ and

i

~—

Step 3. If (

<

8. Conclusion

In this paper a new heuristic algorithm for solving auxiliary problem in the
Cutting Angle Method (CAM) of global optimization has been proposed
and studied. The auxiliary problem is solved at each iteration of CAM and
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the efficiency of CAM strongly depends on an algorithm for solving auxil-
iary problem. It is known that the latter problem is NP-hard.

The time complexity of the proposed algorithm is O(n?). If the condi-
tions in Algorithm 1 from [3] (Proposition 3) are satisfied then this algo-
rithm will be finished at the global solution. The new algorithm can be
applied to more general situations than Algorithms 1 and 2 proposed and
studied in [3]. The algorithm proposed in this paper can be considered as a
generalization of Algorithms 1 and 2 from [3]. It should be noted that this
algorithm requires more memory than Algorithms 1 and 2. A number of
numerical experiments have been carried out using the proposed algorithm.
The results of these experiments show its effectiveness. In numerical experi-
ments, the CPU time was less than 0.01 s, when the conditions of [3]
(Proposition 3) are satisfied, regardless dimensions of the matrix under
consideration.

The study of new versions of CAM using the proposed algorithm for
solving auxiliary problem is the subject of our future investigations.
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